Data Science with R- Programming – 5 Days

                     Data Science with R- Programming – 5 Days
Pre-Requisites:
  • Understanding of Data Type, scales of measurement
  • Measures of Summary: Mean, mode median, standard deviation, variance, covariance, skewness and kurtosis and its significance
  • Describing Data: bar, pie, box and whiskers plot, scatter plot
  • Probability
  • Discrete Probability Distribution: Binomial distribution
  • Continuous Probability Distribution: Normal distribution
  • Binomial to Normal
  • Normal probability plot
  • Various Sampling methods
  • Sampling Distribution
  • Estimation
  • Test of hypothesis
  • Correlation
  • Regression
(It Is mandatory to accomplish the training prerequisite conditions before nominating for the session)                    
Day 1           
                     Overview of Analytics
                     ·         What is Analytics?
                     ·         Types of Business Analytics
                     o    Descriptive Analytics
                     o    Predictive Analytics
                     o    Prescriptive Analytics
                     ·         Application Of Business Analytics
                     o    Used Cases from Banking
                     ·         Popular Tools
                     ·         Role of Data Scientist
                     ·         Analytics Methodology
                     ·         Problem Definition
                     Introduction to R
                     ·         Introduction to R
                     ·         R Set-up
                     ·         Advantages of R
                     ·         IDEs for R
                     ·         Setting the Workspace
                     ·         Benefits of Workspace
                     ·         Packages in R
                     Programming in R
                     ·         R Syntax and Objects
                     ·         Arithmetic Operators
                     ·         Relational Operators
                     ·         Logical Operators
                     ·         Assignment Operators
                     ·         Conditional Statements in R
                     ·         Ifelse() Function
                     ·         Loops in R
                     ·         Break Statement
                     ·         Next Statement
                     ·         Scan Function
                     ·         Running an R Script
                     ·         Running a Batch Script
                     ·         R Functions
                     Data Structure & Apply Functions in R
                     ·         Objectives
                     ·         Types of Data Structures in R
                     ·         Vectors
                     ·         Scalers
                     ·         Colon Operator
                     ·         Accessing Vector Elements
                     ·         Matrices
                     ·         Accessing Matrix Elements
                     ·         Arrays
                     ·         Accessing Array Elements
                     ·         Data Frames
                     ·         Elements of Data Frames
                     ·         Factors
                     ·         Lists
                     ·         Importing Files in R
                     ·         Importing an Excel File
                     ·         Importing a Minitab File
                     ·         Importing a Table File
                     ·         Importing a CSV File
                     ·         Exporting Files from R
                     ·         Types of Apply Functions
                     o    Apply() Function
                     o    Apply() Function (contd.)
                     o    Apply() Function (contd.)
                     o    Lapply() Function
                     o    Sapply() Function
                     o    Tapply() Function
                     o    Tapply() Function (contd.)
                     o    Tapply() Function (contd.)
                     o    Vapply() Function
                     o    Mapply() Function
                     ·         Basic Data Manipulation
                     o    In built function for data manipulation
                     o    Sub-setting and slicing data
                     o    Modifying structure of the data
                     ·         Advanced Data Manipulation
                     o    Dplyr Package—An Overview
                     o    Dplyr Package—The Five Verbs
                     o    Installing the Dplyr Package
                     o    Functions of the Dplyr Package
                     o    Functions of the Dplyr Package — Select()
                     o    Functions of Dplyr Package—Filter()
                     o    Functions of Dplyr Package—Arrange()
                     o    Functions of Dplyr Package—Mutate()
Day 2           
                     o    Reshape package for data structure manipulations
                     ·         Function in R
                     Data Visualization in R
                     ·         Graphics in R
                     ·         Types of Graphics
                     ·         Bar Charts
                     ·         Creating Simple Bar Charts
                     ·         Pie Charts
                     ·         Histograms
                     ·         Kernel Density Plots
                     ·         Line Charts
                     ·         Box Plots
                     ·         Heat Maps
                     ·         Saving a Graphic Output as a File
                     ·         Exporting Graphs in RStudio
                     ·         Exporting Graphs as PDFs in RStudio
                     ·         Advance charting with GGPLOT
                     R Inbuilt Functions & Loops
                     Mathematical Functions: sum, mean, table, colsums etc
                     Aggregate Function
                     Head & Summary Function
                     Basic functions like
                     grep
                     gsub
                     Paste
                     substr
                     replace
                     strsplit
                     Merging data sets
                     Date functions and formats
                     o Format Function
                     o Date Function
                     o Extracting Month & Year
                     Loops
                     o For
                     o While
                     Conditional Statements
                     R User Defined Function
                     Writing our own function
                     User defined function with APPLY family
                     Connecting R to MySQL
                     R package for MySQL connection
                     DPLYR Package
                     GGPLOT Package
                     Case Study

                    
Day 3           
                     Introduction to Machine Learning
                     ·         Supervised Learning
                     ·         Unsupervised Learning
                     Application Area
                     Basic Ststistics
                     Types of Data
                     Summarization Techniques
                     Probability
                     Different types of Probability Distribution
                     Quiz
                     Introduction to Regression Analysis
                     Use of Regression Analysis—Examples
                     Use of Regression Analysis—Examples (contd.)
                     Types Regression Analysis
                     Simple Regression Analysis
                     Multiple Regression Models
                     Simple Linear Regression Model
                     Simple Linear Regression Model Explained
                      
                     Correlation
                     Correlation Between X and Y
                     Correlation Between X and Y (contd.)
                     Method of Least Squares Regression Model
                     Coefficient of Multiple Determination Regression Model
                     Standard Error of the Estimate Regression Model
                     Dummy Variable Regression Model
                     Interaction Regression Model
                     Non-Linear Regression
                     Non-Linear Regression Models
                     Non-Linear Regression Models (contd.)
                     Non-Linear Regression Models (contd.)
                     Non-Linear Models to Linear Models
                     Algorithms for Complex Non-Linear Models
                     Summary and quizzes
                     Recap
                     Introduction to Classification
                     Examples of Classification
                     Classification vs. Prediction
                     Classification System
                     Classification Process
                     Classification Process—Model Construction
                     Classification Process—Model Usage in Prediction
                     Issues Regarding Classification and Prediction
                     Data Preparation Issues
                     Evaluating Classification Methods Issues
                     Decision Tree
                     Decision Tree—Dataset
                     Decision Tree—Dataset (contd.)
                     Classification Rules of Trees
                     Overfitting in Classification
Day 4           
                     Tips to Find the Final Tree Size
                     Basic Algorithm for a Decision Tree
                     Statistical Measure—Information Gain 
                     Calculating Information Gain—Example 
                     Calculating Information Gain—Example (contd.) 
                     Calculating Information Gain for Continuous-Value Attributes
                     Enhancing a Basic Tree
                     Decision Trees in Data Mining
                     Case Study
                    
                     Nearest Neighbor Classifiers
                     Nearest Neighbor Classifiers (contd.)
                     Nearest Neighbor Classifiers (contd.)
                     Computing Distance and Determining Class
                     Choosing the Value of K
                     Scaling Issues in Nearest Neighbor Classification
                     Support Vector Machines
                     Advantages of Support Vector Machines
                     Geometric Margin in SVMs
                     Linear SVMs
                     Non-Linear SVMs
                      
                     Summary and quizzes
                     Recap
                     Introduction to Clustering
                     Clustering vs. Classification
                     Use Cases of Clustering
                     Clustering Models
                     K-means Clustering
                     K-means Clustering Algorithm
                     Pseudo Code of K-means
                     K-means Clustering Using R
                     K-means Clustering—Case Study
                     K-means Clustering—Case Study(contd.)
                     K-means Clustering—Case Study (contd.)
Day 5           
                     Hierarchical Clustering
                     Hierarchical Clustering Algorithms
                     Requirements of Hierarchical Clustering Algorithms
                     Agglomerative Clustering Process
                     Hierarchical Clustering—Case Study
                     Hierarchical Clustering—Case Study (contd.)
                     Hierarchical Clustering—Case Study (contd.)
                     Hierarchical Clustering—Case Study (contd.)
                      
                     Summary and quizzes
                     Association Rule Mining
                     Application Areas of Association Rule Mining
                     Parameters of Interesting Relationships
                     Association Rules
                     Association Rule Strength Measures
                     Limitations of Support and Confidence
                     Apriori Algorithm
                     Apriori Algorithm—Example
                     Applying Apriori Algorithm
                     Step 1—Mine All Frequent Item Sets
                     Algorithm to Find Frequent Item Set
                     Finding Frequent Item Set—Example
                     Ordering Items
                     Ordering Items (contd.)
                     Candidate Generation
                     Candidate Generation (contd.)
                     Candidate Generation—Example
                     Step 2—Generate Rules from Frequent Item Sets
                     Generate Rules from Frequent Item Sets—Example
                      
                      
                     Problems with Association Mining
                     Summary and quizzes
                      
                     Factor Analysis
                     a. Definition and examples
                     b. Factor Analysis
                     c. Communality
                     d. Rotation Of Factors
                     e. Implementation
                     f. Evaluation
                      
                      
                      
                      
                      
                      

Comments

Popular posts from this blog

Cloud Computing in simple

Bookmark

How to manage expectations